Submit Manuscript  

Article Details


Incorporating K-mers Highly Correlated to Epigenetic Modifications for Bayesian Inference of Gene Interactions

Author(s):

Dariush Salimi* and Ali Moeini   Pages 1 - 10 ( 10 )

Abstract:


Objective: A gene interaction network, along with its related biological features, has an important role in computational biology. Bayesian network, as an efficient model, based on probabilistic concepts is able to exploit known and novel biological casual relationships between genes. Success of Bayesian networks in predicting the relationships greatly depends on selecting priors.

Methods: K-mers have been applied as the prominent features to uncover similarity between genes in a specific pathway, suggesting that this feature can be applied to study genes dependencies. In this study, we propose k-mer (4,5 and 6-mers) highly correlated with epigenetic modifications, including 17 modifications, as a new prior for Bayesian inference in gene interaction network.

Result: Employing this model on a network of 23 human genes and on a network based on 27 genes related to yeast resulted in F-measure improvements in different biological networks.

Conclusion: The improvements in the best case are 12%, 36% and 10% in pathway, co-expression, and physical interaction, respectively

Keywords:

Epigenetic modifications, K-mers, Network inference, Bayesian network, Gene interaction

Affiliation:

Department of animal science, Faculty of Agriculture, University of Zanjan, Zanjan, Department of Algorithms and Computation, Faculty of Engineering Science, College of Engineering, University of Tehran, Tehran



Read Full-Text article